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1. Derivation of a Logarithmic Wave Function.-Electromagnetic fields
may be derived from wave-functions in at least two ways that are analyti-
cally distinct.

In the first place four wave-functions satisfying a divergence relation
may be chosen as the components of a 4-vector and field-vectors derived
from these four electromagnetic potentials in the usual way. The four po-
tentials may in their turn be derived by differential operations from the
components of a 6-vector whose components may be taken to be any six
wave-functions. This method is a generalization of the well-known methods
of Fitzgerald and Hertz;' it has the disadvantage that the wave-functions
cannot be chosen arbitrarily if magnetic poles are to be excluded.
Secondly, a standard type of definite integral may be adopted for the

representation of a wave-function and suitable variations made in tie
limits and arbitrary functions that will give six wave-functions capable of
representing the components of the field-vectors E and H in an elec-
tromagnetic field.
The second method has been adopted in only a few cases2 and there is

still much to be learned regarding it. The method will be studied here in
connection with a definite integral of type

V = Wf(u)du (1)

in which
1

X2 + Y2 + Z2- c2T2
and X =x-(U), Y=y -7(u).

Z = z -(u), T = t -u.
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The quantity c represents the velocity of light and is supposed to be con-
stant. The functionf(u) is arbitrary.
When u is constant the quantity W is a wave-function which we shall

regard as basic since it is the analogue of the fundamental potential func-
tion 1/r of electrostatics.
When i, , r and u are all real the function W has singularities spread

over the double cone. X2 + y2 + Z2 = c2 T2 which may be represented
geometrically in a Minkowski world in which x, y, z and ct are running co-
ordinates. The locus of the singularities will be called the skeleton of a
wave-function.
A wave-function W without singularities may be obtained by making u

complex and complex integration has been used by Conway3 and Herglotz4
to derive the Li6nard electromagnetic potentials from the basic wave-func-
tion. The components of the field vectors in the field of an electric pole
have not, however, been represented by contour integrals of the standard
type. An attempt will be made here to use standard integrals taken along
real paths to represent the components of the field vectors in a funda-
mental type of electromagnetic field.

If we wish to integrate W f(u) along a real path we must clearly avoid
values of u for which W is infinite, i.e., for which

X2 + Y2 + Z2= C2T2

It is known that when t'2(u) + 1'2(U) + r'2(u) <c2 there is one such
value of u for which u < t. We shall denote this value by T. V And
so for every P(x, y, z, t ) the equation

[X - (7.) ]2 + [y - (r) ]2 + [Z - t(T) ]2 = C2 [t - T]2 (la)
defines the corresponding r((x, y, z, t).
An integral between constant limits is useless, for the quantity r depends

on x, y, z and t and these quantities may be chosen so as to bring X within
any previously assigned range of integration.
We must work, then, with limits, one of which at least depends on x, y, z

and t. Now it has been shown by one of us that the integral (1) is indeed a
wave-function if taken between the limits - co and s where s is defined
by the equations.

[x -(s) -l(s)]2 + [y- n(s) -m(s)]2 + [z -(s) - n(s)]2 =
c2[t - s -p(S)]2
s<s+p(s) <t

[I(s)]2 + [m(s)]2 + [n(s)]2 = C2[p(S)]2

and that the dangerous values which of u for W is infinite generally lie out-
side the range (- co, s) though r may coincide with s in certain cases.
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Regarding t(s), a(s), t(s) as the rectangular coordinates at time s -of a
moving point S, and i(s) + I(s), ro(s) + m(s), c(s) + n(s) as the coordi-
nates at time s + p(s) of an associated moving point, Q, the quantity s
defined by the above equations may be interpreted geometrically as
follows:

Let the world lines of S and Q be drawn according to Minkowski's
scheme and let P be the world point (x, y, z, t). Let a light-line be drawn
from P in the direction in which t decreases to
meet the world line of Q and from the point / p,(zt)
of intersection draw a light-line in the direc-
tion in which t decreases so as to meet the world
line of S.
The value of t at the point of intersection is /

the value of s defined by the above equations
and this value is unique if the velocities of S .e
and Q are always less than c.
Thus s is defined by means of a broken light- s S

line from P to S and is clearly less than T,
which is defined by means of a direct light-line 0,'
from P to S.

There is one case, however, when s = r and
this occurs when P lies on a prolongation of a
light-line drawn from S to Q in the direction in which t increases. For
such a point P the integral is infinite at the upper limit of the integral and
the wave-function V is generally infinite; it may be finite, however,
if f(s) = 0.
The skeleton of V is thus a "wing" made up of light-lines starting from the

world line of Q and proceeding in the direction in which t increases. The
breadth of the. wing may be made as small as we please by choosing f(u) so
that it differs from zero only for a short range of values of u.
Now our object is to carry the limit s close up to the value r and to ob-

tain logarithmic expressions analogous to those which occur in the theory
of Cauchy's principal values of integrals. In order to obtain finite ex-
pressions we shall introduce a second point R associated with S, the coordi-
nates of R at time a + w(a) being

G(a) + X(a), 77(a) + IA(a), (a) + v(a)
Instead of -O we now use a second limit a defined by the equations

[x- (a) -X(o)]2 + [y - 72(a) - IA(a)]2 + [Z -(O) -v(o)]2
C2[t - 0- - W(q)]2

[) <[o + [v()) < t
[X(or) ]2 + [1A(CF) ]1 + [V(f) ]2 = C2 [@(a) ]2
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Moving the world lines of Q and R close up to that of S the limiting value of
the integral is

f(r) L,
V = - 2M log A

where
L = Xl(T) + Ym(r) + Zn(r) - c2Tp('r)
A = XX(r) + Yji(r) + Zv(r) -c2Tco(,r)
M = XT'(r) + Yrt1(r) + Zr'(T) - C2 T (3)
X =x - (r). Y y - r1(r)
Z =z- (T), T =t-r

and primes denote differentiations with respect to r.
Since we are concerned only with the ratios of 1, m, n, p, to X, ,, v, w we

can ignore the fact that in the above construction 1, m, n, p. X, ,u, v, w are
eventually made infinitesimally small and we may regard them as finite
functions of r. It is easily verified that the function V thus defined is a
wave-function and that its skeleton consists of two wings issuing from S.

2. Derivation of Electromagnetic Fields frotn the Logarithmic Wave-Func-
tion.-Our object now is to derive a set of wave-functions which can be
used as the components of two field-vectors E and H satisfying the Max-
wellian equations

=1 bEcurl H - - , div E = o
c at

curlE= -1-a, div H = o
c at

In the first place it should be remarked that if E and H are wave-func-
tions of types

E ef(T), H = hf(r) (4)

where r(x, y, z, t) is defined by equation (la) and the function f(r) can be
chosen arbitrarily, the conditions

ArX h --e A-r. E= o
c a:t

(5)

ArXee -h Ar.H=oc at

must be satisfied. These conditions are sufficient to make wave-functions
of type (4) solutions of Maxwell's equations provided we add the equations
which express that E and H are wave-functions for all forms of the function
f(r)
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The conditions (5) are analogous to the conditions of compatibility which
occur in the theory of the propagation of waves of discontinuity.' The
geometrical meaning of the conditions is that a world-plane through P
representing the direction of the 6-vector (e, h) contains the light-line
from S and is tangential to the light-cone whose vertex is at S. This
indicates a method of obtaining the components of the field-vectors.
Using a geometrical picture in the Minkowski space in which x, y, z and

ict are rectangular coordinates of a point we displace the points (1, m, n,
icp), (X, p, v, icw) by means of small rotations through the same angle 5G
about the planes of yz, zx, xy, xt, yt and zt in turn. In this way we obtain
six components of types

_f(7) nY-mZ vY-1sZ

cf(r) [PX-IT wX-)-TJ
E = L L A

where X, Y, Z, T have the same values as in (3).
The skeleton of the field thus specified consists of two wings issuing from

S and made up of electric charges radiated along light-lines drawn from
different positions of S. Whenever a positive charge is radiated in one
direction a compensating negative charge is radiated in another direction.
By suitably choosingf(r) the breadth of each wing may be made effectively
as small as we please. In this fundamental type of field each component is
a limiting form of a standard wave-function of type

JWf(J)dr - /Wf(T)dr
The field is regarded as fundamental on account of the simplicity of the

field-vectors and the atomistic character of its skeleton. Moreover all
the fields that are of particular interest in physics may be derived from
this type by superposition, the field of an electric pole being obtained by an
operation analogous to differentiation in which the wings of two fields can-
cel one another out.

When = v= = 1 =m-X u =o, _ P one wing may be

cancelled out by means of the operation + - while both wings
.^ ~~~~~~~~~~axc, at

1 2)2 62
may be cancelled out by means of the operator - - - or the

c2 6J2 6V2

equivalent operator + . The resulting field is that of a Hertzian
?X2 2y
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dipole whose varying moment arm is in the direction of OZ. When the
logarithmic wave-function

1 __r_+_zV = log +
r r-z

is taken as one component of a Hertzian vector the resulting field has a
skeleton composed of two wings but these wings are the loci.of radiated
dipoles which are gradually extinguished as they travel with velocity c.
This gradual extinction may be regarded as the. result of a secondary
radiation of dipoles. The field is certainly not as simple as the field which
is regarded here as fundamental.

1 For references see H. Bateman, "Electrical and Optical Wave Motion," p. 7.
2L. c., pp. 12, 113.
3 Proc. London Math. Soc. (Ser. 2), 1 (1903).
4Gott. Nachr., (1904).
0O. Heaviside, "Electrical Papers," Vol. 2, p. 405; A. E. H. Love, Proc. London Math.

Soc. (Ser. 2), 1 (1903), p. 37; P. Duhem, Comptes Rendus, 131 (1900), p. 1171.
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A number of experiments have been reported recently' on the secondary
X-ray spectra produced in secondary radiators composed of chemical ele-
ments of low atomic weight by the K series lines from a molybdenum
target tube. These spectra show strong lines having the wave-lengths of
the primary rays and in addition other strong lines having wave-lengths
several hundredths of an Angstrom longer. The second set of lines of longer
wave-lengths seem to occupy about the same positions in the spectrum no
matter what the chemical element composing the secondary radiator may
be. Their positions are in substantial agreement with Prof. A. H. Comp-
ton's interesting theory of the transfer of energy and momentum from
radiation to single electrons.
These spectra differ essentially from those obtained in recently described

experiments,2 performed in our X-ray laboratories. In our spectra the line
of longer wave-length shifted its position when secondary radiators of
different chemical elements were used. In every case its position agreed
very well with the idea that the radiation represented by it was produced by
the bombardment of the photoelectrons due to the primary rays against
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